turunan fungsi implisit dan turunan logaritma

TURUNAN

Definisi Turunan Fungsi Implisit yaitu fungsi yang memuat dua variabel  atau lebih,  variabel-variabel tersebut terdiri dari variabel bebas dan variabel tidak bebas, biasanya variabel-variabel tersebut dinyatakan dalam x dan y dimana variabel x dan y terletak didalam satu ruas sehingga tidak dapat dipisahkan menjadi ruas yang berbeda (baca : ruas kiri dan ruas kanan) seperti halnya fungsi eksplisit.

Turunan Fungsi Implisit  Serta bentuk umum nya
    Secara umum bentuk  turunan fungsi implisit  adalah f(x,y) = 0, mencari turunan fungsi implisit sama dengan mencari solusi bentuk umumnya dan prinsipnya tidak jauh berbeda dengan mencari turunan fungsi biasa.
Untuk lebih jelasnya Perhatikan contoh-contoh soal dibawah ini, bagaimana mencari turunan fungsi implisit.

Contoh :
Tentukan http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;%5Cfrac%7Bdy%7D%7Bdx%7D  dari setiap fungsi Implisit dibawah ini!
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjCOk4ZhyLZPtvHeEdVCwQB_hggpw1lCGQ6AwwJ5ff1boMifHxnSneFiI_fpdkguzpfMY6BnBygkeCE3G17pitXipumTboQ5ESKQDQg7urkiWfp5fwdW84BCe6gg8JywfeAiwbF1B4NBWSZ/s1600/implisit-1.png

[Penyelesaian]
Turunkanlah kedua ruas terhadap x,
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg-urJxu3-6cTEYXc9ZtGYmfcj68Rcd2tqgalSbArJXn49CeGzhEouH-5jEroUmGvNbQ7GUwBCC9S5gAiE4O-7Ui_SJ68zAj2wSxRelYpbWoeXRx2WW4n-Poy9SUtcYVmPoeQFulYMd-Z4L/s1600/solusi-implisit-1.png

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiLRtBi14F86w0ssLbaTAntFTGL6zz-ZofrHeFMTz7jolvhsPK9YdCLwAUWJnug9q02plpYktgncCcXVStYWP9j3NMTSYwzoXNP-pEJAWR4MAhQgCt0EpHvdQ9fOARmHft0MDqka1fGBe8V/s1600/soal-no2.png
[Penyelesaian]
Turunkanlah kedua ruas terhadap x,
http://soulmath4u.blogspot.com/2014/02/turunan-fungsi-implisit.html

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhiPyCLBLUTkMcbGRKlHNcztBvO15JiFegNLnVVV1xj_PQf5O1u9GVZWBVaX7k8IDNyv8Z42iQUVONs4XaHlTAB14Fltbs4C9byOIFCzKnL2XfjYp3K6nE8Cv_Ecv_TXp1J_TVfp1ihiA88/s1600/soal-no3.png
[penyelesaian]
Turunkanlah kedua ruas terhadap x
http://soulmath4u.blogspot.com/2014/02/turunan-fungsi-implisit.html

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhO6vSBg4FHMqHJNtesz8WvBs5j3v9ExdOks6J4yC1V6trxu2BHo1gcspT0uItOfF3Kd498JZ3l7Ht7Qx7uC0OpcKLBjv0W-B88mHjTaCnM3XY-PNUkoP9bs1otgc_N3V031X6lv7MbRsbY/s1600/soal-implisit-no4.png
[Penyelesaian]
Turunkanlah kedua ruas terhadap x
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjwSPaTh8pPxEStCvvR720VGc6HQUWryxJk4DQ7BBLa823bPErq0IJa8IPg9TnnkjY95MJARQ-AKp_-bKIbQwQ-VAzjeLELRkztg9pISwUDOLCTyPh8W36wsadX9bEo_pap1SQyh4e7tHE7/s1600/solusi-implisit-no4.png

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhZotr6457ymGHo9nyCBehmlOGDmUMUu1u2_Be8-DqpPe7tM_tRJM2vEgrqrlCn0ywRkeP9b8NwglfTWaGj_0SWa-Ke7CR8eubCS-lBxHWKVcUtYRl3Y_GRxmIFSf2khmo320JtfJ7lzCEd/s1600/soal-implisit-no5.png
[Penyelesaian]
Turunkanlah kedua ruas terhadap x
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipTKcfiqgaE_avZdD6OaZlO-2ofvLewScImaR_j-5X13SL0ySNxcb-gNOihD1nd-JtVwYQ6VlcyTYl7Kw8UeaubFNVm6expUdw5z8CQE_78AuDfLAZ4BEDEljLZ4sebjl4yE8EPE4UI6bZ/s1600/solusi-implisit-no5.png

Beberapa kasus dapat diselesaikan dengan 2 cara yaitu:
Cara I :
x3-3x2y+y2=0
3x2-6xy-3x2dydx+2ydydx=0
dydx(-3x2+2y)=-3x2+6xy
dydx=-3x2+6xy-3x2+2y


Cara II:
x3-3x2y+y2=0
3x2dx-6xy dx-3x2dy+2y dy=03x2-6xy-3x2dydx+2ydydx=0:dx
dydx(-3x2+2y)=-3x2+6xy
dydx=-3x2+6xy-3x2+2y













2. Turunan Logaritma
Katakanlah semisal kita memiliki fungsi f(x) =5log(x3+x2-4) maka bagaimanakah kita menemukan turunan dari fungsi tersebut?
Sebelum kita menginjak ke contoh tersebut, marilah kita uraikan dahulu fungsi logaritma yang paling sederhana, yaitu: f(x) = a log x.
Sebelum kita mengetahui turunan nya mari kita lihat sifat-sifat dan rumus-rumus logaritma :
Berikut adalah rumus-rumus dasar turunan/ derivatif:
Bila y=f(x) , y’=f’(x), dan a adalah konstanta maka:

1.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgKMvKJigFS1O-Y3Rv2IezsN0iYx3XNhjPs2HmQxd5kfw3i6BjwfIbomb7f1JYo6zMLzxveLjcHucZXlIfTnwaM5tceISKIO7T1y0jr7bOgBL4dLEep14a2qeP8itevEkZ_0QvtT_eD2chs/s400/1.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiCr6LjdArPW8sgrLkRPfFbqN56RFcVaIDLA-8pqv10lNRrDQpXrGB698lQA8o-FWfWoqqLuRmTuNz3EA7hLqzOVd39VrO7AZ8GQytBe6fjlCnI_ZrMI3yMTOAdBq8eHxYEwuf2G208t4bq/s400/2.gif
2.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj0mUfzajPo4tg2Vf2VRs7thhoX1zGLRuTU5CZAXjT7u8uQWSV0LXu5ckN6WMY7qsxcIjahXZv18GHVFv6SnLLMy930KOvihlJzwKqUhYID8A2ROs0aXcpQjh_7ZQ4liI2JiHWu5DZwqfg_/s400/3.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiPrlv06-y-Uj1Kzltfpg9sSSLit48LybQBw_BTX0xavxW4uf4TypY6YU9dMXQsTmTuc5kSP6LXe1YDLUZ9RtBLMaVec2-5SfmPglW_I7E2-F4iocntBIkcLuvD3sOAezYvEQWjfKC_-qLe/s400/4.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjOn4zLQeLdoUauH1OESKn-OLyFutPKn6OBKhyphenhyphenZwsGtLoA3nwNVFrHGRdeo4drX7Rx9okFR2MNoC2flylPn3-YQqJeCi9brR6fFjWlZ5d-SsJj_kvKCx9L1frcWG2bZSOPSQ6cNDdCRCGUB/s400/32.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj2rqEOktUeM66Vbj6Vil57fC5mKmzkDlZoIy_hwexKUnKu-xKzwniIajkyPbndLLwRfoGzzqx2AX0rdCQOFryD4LOOiY_nLd53K_HS4SkMMpLzhTEX0C37KI0O7XEMFeZzJvM8PhnlZN4_/s400/33.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjCzr_7kLvmIQ3NPn7ULqLPuCVPvUzfx7Mr916vG6dhXchqnmv3mUFgH8t5XwIlfeElMjdkWKdsDnSd90cLh7O1tqQYsfkKCdbAvTYFYYkezTWEAW2hkxOCItg-47FuB5DjxQd5_Tfy-N3Y/s400/5.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjL4ocGlDIwbH494yGa_c1YChrtzmNaWJ9qiSEg9hJ6lUUnFDFjpJclj4HxKvxJw2Dr67kRyU1Zp9ZhtSsIPgfRjmFFAkmUC-_iFj6fB7NzDLNDc04__tpof_bUUgs1eLFuYfxfMyTSHtk5/s400/6.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjCaPDZFs0zg9dAD55JX22q6kznCtPt49RMS6tIVeag9SSSTLIzHhu0J80aXdT4hDeHjlcLAmAKOaGdWVESIoxGZEXgrxcqozFuAhg080IQrFjfKdkZkjKlvG7vKzazcgKQhsB2ZEa3Y-P7/s400/7.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi74JV7KSJHjQWcL8a3RhJpHQQEjl3pqNLcf3PcnIisyBygARdH53ir6xD-qn91oD_bkLekRyPwe-TDc4pRn40laxyGxwd6RbA9HdMUH5_oiMjkuGLXbgl2svrqXIgq7bQTUJjsFl7QeB45/s400/8.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhuuMOfT29u1PTHTDfIHapi69B1KZ6qF4NquwJLAvGlBGhy7D2l0oj4-N7Hn15QfjaXTCXotPE3TFdSURuOnuzuMCmCsn2oetNUZqTw9NoDfjUBkhjc8Jk2__rsO8TdserHKqYA68Ns-zDf/s400/12.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgha668iZWXhSIPH3n5fHEpvDEL7jecIQZqt7ERC0B0yA7yUI6Haa-jjWZDCOs0UgIsURp00Y148FWz7kQ4VZ8noVfVCFO-9Fh8Rq3cG4bGATbb3hUJl3yJ9JiX0JOPNohD6BU1C3IoBwA1/s400/13.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhuxORHZpp5qbF56I-9BeCQ-4PMb6tSCSTiTFH4B59qCXFpo4VFoLL1BxdQ2792p_x3oPDKbEFwORBS0eEmHH2squpslgPaFOHesKJmx0b7WDF1sIJRKkJlWJbymtB3EY0bL_sflpckA1RH/s400/7.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjSI_xJEY2kn_nSLTNGRFsJZHYBC2_oic5n0b5sHtWC3omtUcR4EuYbXhQ1UuhGMFvdmyMXxqVTwhwVHsCXDuON9w7MxJON9x5k539ABqsNCBUoLepVrc3-n-2F7a0fYTx8RerrUgFiWYfE/s400/8.gif
3.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgfDjdh7qjX65KEfAN2W_MEhyphenhyphennbR7-5TP-6OWdQQ2luXgmkKwAref8UctvBAjKVtcfzjqYCDxAZ17uOMDLMBBW37ohkj4e14taNcuRs_5So-1HXVYEWXr3h0FdM8KSZ5jYDQ1s2BHN4b7cJ/s400/1.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi8EvEInFTTH90SHPmbLZC4t73dxs4ridptMfGp7OraAnPOQ6JJ8xCR-XmxnY0Badl6K0ZesvaHDbvgHdq5Hp9rfUI356Dab9k4y8F48wpgsuk0ME9OIcFVkxCQFUS5bPjpLNtfHVOtEulo/s400/2.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgvPzIvcU7ngQrXgCUGbx2q3pUgi20E-stuhDt6CrKp0V7dUZRxqfrEq2BMQ4SgpDACbpeQGoXKlA5hZea1Qa0EltTCYiYB-K_7emZDIA7T0Y65mf21hmwxI1AUwhN0MbD7qHD6Izy7QJlO/s400/3.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgPcRuQJG5JyodfkHWc39AljLju59oD2Fb2TQ51KkVusjzy4KK51FZ81U3dQM49FEqDI8cnWUHv7Hu8xl_rH_8JRwObsfXky85GLpvehz06U7BNPsIeXCfbM-vJ2SwO2WEsAoM-HBBYdnln/s400/4.gif
4.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgRmEKl6SXFz_wh73hJKsxTckKtA-8kG7Nvbbf99noZEA5pIkX6cXDxblbsvae8r_X0763Vvr_6Emn-bLYqoswyVhAzvpY4nG80vMecQwp4-RnEMS7w42PQQlsphCb8rMRNlV6ayPjJ_rL0/s400/5.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg7M13Uk1aowfT-Tu-eooSYTgzcUvyby829xS4_kf6JHKdC2yYvQvoJauuxnulvSEYKPd5GM0yPBywzdTZM3NozePba63bJ1Vz5dQRHqjuuO7MEJC2St-siVoveHXFWatWM2wQ4Bm476yAp/s400/6.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhJLGNtwtjOzlmO0wy7ZU14igYPtOfzwhmUdPQRMcTGlg4oFZTR9W7G5vNdQc5MNfn2pi1nnLZzqVL7zpoldhKWKo3nqv0y3du2oXlHP4HNh07LSV00qS2np_LV93E7zBX9AdW3ns1IsSmc/s400/7.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjcCv7f-11Xh1RHaanqbSHcJyCYodxkaCXVd0jom_OY0bzWuuau0889icpsK20tTdXVVAjV1eWSw7ihrVw43lqY5t8HzGw8lrlJMG-ACgDBevWDeXfJEsvFM_VnfPXnUybudkJPal6kSlb9/s400/8.gif
_

5.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpZ9euB56MtcKFKaiXUNavinBHmMxCPyynqz2sUg6jXJcktDQUNDTWIK3jRn9J9chzYqYaTveGulYzDlXPmDDVaieV5Ij-TkkPV9nmH5n2ClH3FOHhUKHs0UrHGqglWjsHDIfTuXOQpqcB/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjnHdYQK46yM676l_IGyn7Fdr-FmMZjkHiQgpZ3AEzpmVzFlXVkkhoM66mIbYmnltrixBCQt-RJZXUVFwhMXLBc2hFhah4SVRucmHraVrdQzRqpzQyV2ZoV2F33GtKrz7RdRARexevy-_lK/s400/10.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg1HxUxuy9NbvLwJxHTSYTeumgSqzRhwyXe5V58a7wGYm82hjr72xvl95k5H0EDeyVks13BB3VRUL77EpFnGQMFXv6Ohcjgx4XJtmz4uVKFCSpbW5lFSxxpjxrQP_qGSifP6eMpm7JfuAls/s400/13.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEib4Q52PYqwEge5c9IqhOmChmQ0SX7CeHT6Y2cC7wNyhjX7uO0q03CHYDUtA6UQv4lOCX6xsU5sr5pRAbdJXAooIwTtAc4wYgGjJEjvO9sru_wJqIG7DG1gZRhx9Rklflgvy42xA2tZfOWl/s400/14.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj1pKWVTtFmYGd4Pk7ylvEr6EQZth7DpOLmYjJ38ccLoIA6s3vr1FoU_tbChctjtgohbJGeEzhxtcPjpHKIsKzLEyNg9Qkbe8YZIkgfRKwc_ifGhbS19R3Sw_JKzctSO68L-vRXPVlIu0j_/s400/11.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEigU6OgBOwVzaDOd4hiWW6dSbo3XPLCqbJgbGdCpBK_2v0N8_vusw0yHwhNYU5cE8mUWbv34KP0_KFyitE0PqcHacRmfAs1EeKRm-AqsnoyYXZTxPDmg8yZF_D0KvJtWHJ1mYL0D7nOCnnv/s400/12.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjQf5OAKvKOULq1kE8vLBzHmETM6BuSUec5jksPv6ikWXVpOMI9NDto_Oq3ZvINmamoQ_OdFT35j5kkxmhCMj3ZZDKF6Zem1lfLtA8Ia_sAt_AEPgug2r-pXT6J7oRNU4ow9c2na0W7hflY/s400/23.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIaMTRMynj7DxYClcNzVKYHbDg0lM4J30H3V1ZX_Ysqr16BIC7SO2SuzOqtB2uAk6lYIGNLi4E08KTq9Es8-MVFZxcK_1NM1Ow9ihAwQ7tDl6dvLApayzzTtiOxMi6a-Jgai95dEMxWJLW/s400/26.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEirmvLg_XmRcrrxR5eFsc8_BsioJAMTd4ga8ZI80FnGKc2Ua-FVQlDY798-12XenOscSklo1U8-LHVl6mLnq-1C4-bljBIQtdmNk6zKkUQkyHtJmhDs8PjWALEGFpErjupWjxh4nWKF3plg/s400/24.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhUK1Yda_wX7eyZbhxrCj33sBii3kuZWX0liKoZFJSzoJmZGb42KDGNJwqw2jbWheFax1fK_earMV-6MaCr2GXhF6XFyEN9vT5qqYGtSfad4RHfzgmW8JGQpi_sueg1pxa0MuEcoGFXSMsJ/s400/27.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhSP139a_F9UoVYaMIg-WciQP5fhumoRNT_AtIMSef5IG6i6VmsMD2OS3DPdmWWWmkYZyMFmiWeVBSJ0TrV3cUn2JyLnXUpY9BHRPwNfZs6jmIlImptJAaHYHyJ447oRnyhLcadbc7l8FXT/s400/25.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjLHQo-T5QSSYlve-OHtphmtcPS1Pu5Fe7Zm1gmPM3zyna330_30BslqR6sqnMNE503c5HlJD1zPM1QlnVKCq6J1YJUmj_TTjFvc-e9Ny1HbukJ7UKkPZWwswjlGcCnZbVgGCRvTkoxBcSb/s400/28.gif
6.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiwtN9HhCekUYJVwzn0NRhqkb2_qF22QNqqmj7TEnCgSmDCBxBlC1inXp-THBnwO_GMOfOL8AMMMW-TytDM-uCnCAOm517NvqI5BPu5zCOy7_oNzpklnV4gIw2qzow9Za7KgKl3OdXIrrTk/s400/15.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEi7piEuptBIU2AJKcfiWyT4QyAylJ0pLb8jCQKR1Veq-CRtlJVczz5uWrE1xxeECZQwP-TCnM6sNl6ukhF07xVt4EjPyVV4J_yJw3JJwefpcSRbzdZjXsVezGAfGbH0mP0AubKOD43pDRCF/s400/16.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhZ8pCP9592J30_8I0_vNURxDzX6KPSmqfGvdo29POIgc_0Ia_5Tb0EF0jBLITEKv9Tgku4dJzGXHjmuTXxe26-I7CXmykZt76JOfKaFjONpa75sg_1WbR32GG5MlaNpmLSGZPWcjKM3ath/s400/17.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhI4AP6YsbOgLZyyWwS3hESltfK50XMabDACXjHLPxGCHfZe9OTynaoIvI2vfV_QDq84L-Hm8D1uPMXkmx5pZqCWsFdaTZZoSohjc0XAxNDRfaSpW8nrmtNIt2nd4tvmnYHypwKqJo-fM4A/s400/18.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiZXTQ0rIlIBZZleyJsL3_MoA56PbilP-xJzKMMJ6vPgxeWCxNN_SOQTOvH8c21ndYbfKy50aQQCcMxGJ9MGNFfFNjQwOOX49FB10nJ6jdNrb2C63gx1Yq-iEQomb6PL3N5NxScEvDM2TxK/s400/19.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj7C7yx-1_YCi9Nf5PmVXFH6_p9S07nbTebN6NLsgyhzoqfKl2SkuymeFufky3QCzTdsv2t0OxRe-0p0oBijMp1JofBAk1qpB26PM8gltJDtzn1SycpoNiJ8tk0WJgVuLBJ71840vkKXwj7/s400/20.gif
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgDAD1bwLmi2vbrhPej5WQftPRCNpiqE-jdWF2c6k1VxMDVyArFtc5KwJl6Ca7HnlX20ajrzwqc6UpLxyiKotCyjMyxBwj8Lz6OG-V_vWmHJ9EAvd34leC0ftELWJDVnDVB0wCwKIhyphenhyphen_BdB/s400/21.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiUGVg1NX-WG4fLMBvOrxYQTanD9Rs6GoWnoyjhPV4m8ic5wQUS-iHMDZ1E8pKFqb0fQ2YEV5uwzno3VGE_wavDxdCy-l_2p8sR7yGFIn0kxaoU-SGbroENOUF_4OTTNknSMIS6sxY_8ekb/s400/9.gifhttps://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgqUSthF69_GHyqMehOOLUS3Zp22LEOig3yIIE5ZL7ShDnpQsMEALF-_tTmL8tV45CV8wA9FUwITdBb78Cb_tCLOTiA9NQiEjQtpGcgRBn0BP7sciqVMESPWNHxoMKA9ejHr-0Lt2FV-b8W/s400/22.gif
etc…






Rumus-rumusturunan fungsi logaritma dan logaritma natural






turunan logaritma sangat erat kaitannya dengan logaritma natural :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjSRaPmeb1_PeCKFA3uLl6UEl9BGATpgUE420DB8LFmeLYvx5DHeTD7jpaOVYoM3QmeIsoXDtMU82KtbdlzlpFePD2T7D6nCuEykHLp99GwDtcAXx-a8-A4lrs4pC9sWkWX3HinmgegAX91/s1600/sifat-sifat-logaritma-natural.png





Sifat-sifat Logaritma
ª log a = 1
ª log 1 = 0
ª log aⁿ = n
ª log bⁿ = n • ª log b
ª log b • c = ª log b + ª log c
ª log b/c = ª log b – ª log c
ªˆⁿ log b m = m/n • ª log b
ª log b = 1 ÷ b log a
ª log b • b log c • c log d = ª log d
ª log b = c log b ÷ c log a

Jika diketahui f(x) = a log x, maka,

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhg_oCT9MbylOKNC-wjY7FGWyoVdng3WP3Y-Y_3AwuK_BpIqFscgZxbZXboW5TNSMJiPmGC-HSm78rQTiqABVWteGO5AKceh-In5hJy04Xl5j5dduU-r6GB0yBNwqYsfG5QUpGLnzhFAPzG/s1600/3.jpg


Untuk f(x) =5log(x3+x2-4),
maka a=5, g(x)= x3+x2-4,  dan g’(x)=3 x2+2x.
Sehingga  turunan dari f(x) =5log(x3+x2-4)   adalah

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhwA0WGim6SGCb7RHqAAIn9gT4Cwwf1bmKWiOeiyQU0vYQYm_mIJSKOcjkMswJAFwEY9jJCyD_80sQpqrbfr3JTLO4LXMoMSHw4_rnywSzN3Zu75DJ9X2HGMy-BUzJsgVEcrPHiuA4UwkbJ/s1600/5.jpg
Agar lebih jelas perhatikan contoh soal berikut

http://latex.codecogs.com/gif.latex?%5Cdpi%7B200%7D%20%5Cfn_jvn%20%7B%5Ccolor%7BRed%7D%20f%28x%29%3D%5E%7Ba%7D%5Clog%20x%20%5Crightarrow%20f%27%28x%29%3D%5Cfrac%7B1%7D%7Bx%5Cln%20a%7D%7D
Contoh 1 :
Tentukan turunan pertama dari y = ln (8x +1)
Jawab :
http://latex.codecogs.com/gif.latex?%5Cfn_jvn%20y%27%20=%20%5Cfrac%7B1%7D%7B8x+1%7D.8=%5Cfrac%7B8%7D%7B8x+1%7D 
Contoh 2 :
 Tentukan turunan pertama dari y = ln 9x adalah ....
Jawab : 
Cara I :
http://latex.codecogs.com/gif.latex?%5Cfn_jvn%20y%27%20=%20%5Cfrac%7B1%7D%7B9x%7D.9=%5Cfrac%7B1%7D%7Bx%7D
Cara II
y = ln 9x = ln 9 + ln x
Maka :
http://latex.codecogs.com/gif.latex?%5Cfn_jvn%20y%27%20=%200+%5Cfrac%7B1%7D%7Bx%7D=%5Cfrac%7B1%7D%7Bx%7D 
(ln 9 adalah konstanta, jadi turunannya = 0) 
Contoh 3 :
Turunan pertama dari y = ln sin x adalah  ...
Jawab :
http://latex.codecogs.com/gif.latex?%5Cfn_jvn%20y%27%20=%20%5Cfrac%7B1%7D%7B%5Csin%20x%7D.cosx=%5Ccot%20x
Contoh 4 :
Turunan pertama dari y = ln cos x adalah  ...
 Jawab :
http://latex.codecogs.com/gif.latex?%5Cfn_jvn%20y%27%20=%20%5Cfrac%7B1%7D%7B%5Ccos%20x%7D.%28-%5Csin%20x%29=-%5Ctan%20x
Contoh 5 :
f (x) = 7log x maka f ‘(x) = …
Jawab :
http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D%20%5Cfn_jvn%20f%28x%29%3D%5E%7B7%7D%5Clog%20x%20%3D%20%5Cfrac%7B%5Cln%20x%7D%7B%5Cln%207%7D%3D%5Cfrac%7B1%7D%7B%5Cln%207%7D.%5Cln%20x

Adapun beberapa soal yg di jawab menggunakan metode rumus yg berbeda. Untuk lebih lengkap nya lihat contoh berikut :
Tentukan turunan fungsi-fungsi berikut ini!
1. http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;y=log%5C,&space;%28x%5E2+4%29
[Penyelesaian]
http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;%5C%5C%5Cmathbf%7B%5Ctherefore&space;y%27=%5Cfrac%7B2x%7D%7Bx%5E2+4%7D%7D

2.http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;y=log%5C,&space;cos%5C,&space;x
[Penyelesaian]
http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;%5C%5Cy%27=%5Cfrac%7B-sin%5C,&space;x%7D%7Bcos%5C,&space;x%7D%5C%5C%5C%5C%5Cmathbf%7B%5Ctherefore&space;y%27=-tan%5C,&space;x%7D

3. http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;y=ln%5C,&space;%28x%5E2-x+1%29
[Penyelesaian]
http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;%5C%5Cy=ln%5C,&space;%28x%5E2-x+1%29%5C%5C%5C%5Cy%27=%5Cfrac%7Bg%27%28x%29%7D%7Bg%28x%29%7D%5C%5C%5C%5Cy%27=%5Cfrac%7B%28x%5E2-x+1%29%27%7D%7Bx%5E2-x+1%7D
http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;%5C%5C%5Cmathbf%7B%5Ctherefore&space;y%27=%5Cfrac%7B2x-1%7D%7Bx%5E2-x+1%7D%7D

4. http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;y=x%5E2%5C,&space;log_%7B3%7Dx
[Penyelesaian]

http://latex.codecogs.com/gif.latex?%5Cdpi%7B100%7D&space;%5Cfn_jvn&space;%5Csmall&space;%5C%5Cy%27=2x.%5Cfrac%7Blogx%7D%7Blog3%7D+x%5E2%5Cfrac%7Bx%7D%7Blog3%7D%5C%5C%5C%5Cy%27=%5Cfrac%7Bx%7D%7Blog3%7D%282logx+1%29

Comments

Popular posts from this blog

perintah dasar linux membuat file dan memindahkan file via Terminal

Cara Daftar dan Menggunakan Adf.ly

Direct Download Dengan AutoDDL atau AutoGenerateLink